Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / Page 19

Math 375 – 9/25

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Span • L(S)={x∈V│■8(∃n∈N∃c_1,…,c_n∈R∃x_1,…,x_n∈S@x=c_1 x_1+…+c_n x_n )} Theorem • Statement ○ S⊆V is a subspace ⇔S=L(S) • Proof: S=L(S)⇒S⊆V is a subspace ○ Let s,t∈S, k∈R ○ Then s+k⋅t∈L(S) ○ L(S)=S⇒s+k⋅t∈S ○ ⇒S is closed under addition and scalar multiplication ○ Therefore S is a subspace of V • Proof: S⊆V is a subspace⇒S=L(S) ○ If T⊆V and T is a subspace, then L(S)⊆T ○ Setting T=S, we have L(S)⊆S ○ We also know that S⊆L(S) ○ So S=L(S) by definition of set equality Question 1 • Example of L(S∩T)≠L(S)∩L(T), where S,T⊆V ○ V=R2 ○ S={v_1,v_2 }, T={w_1,w_2 } ○ L(S∩T)=L(∅)={0} ○ L(S)=L(R)=R2 Question 2 • Let S_1,…,S_n be subsets of V • When is L(S_1 )∪…∪L(S_n ) a subspace? • L(S_1 )∪L(S_2 ) is a subspace ⇔L(S_1 )⊆L(S_2 ) or L(S_2 )⊆L(S_1 ) .02 ore I U. • Tu,
Read More >>

Math 375 – Homework 3

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 9/21

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Theorem 1.5 Theorem 1.6 • Statement ○ If {v_1…v_n} and {w_1,…,w_m} are bases for V, then n=m • Proof ○ Suppose n<m ○ w_1,…,w_m,w_(m+1)∈span{v_1…v_n } ○ ⇒{w_1,…,w_n,w_(n+1) } are linearly dependent by previous therom ○ ⇒{w_1,…,w_n,w_(n+1),…,w_m } are also linearly dependent ○ But {w_1,…,w_m} is linearly independet, because it a basis for V ○ So n<m is not true ○ Similarly the assumption n>m also leads to contradiction ○ Therefore n=m • Example ○ Given § f(x)=1+2x+x^2 § g(x)=x^2−4 § h(x)=2x−x^2 § k(x)=x−3 ○ Claim § There exist c_1,c_2,c_3,c_4∈R § such that c_1 f(x)+c_2 g(x)+c_3 h(x)+c_4 k(x)=0 § And at least one of c_1,c_2,c_3,c_4 is not 0 § V ={all polynomials of degree≤2} has basis {1,x,x^2} § f,g,h,k∈span{1,x,x^2 } § ⇒ f,g,h,k are linearly dependent Theorem • Statement ○ If V is a n-dimensional vector space ○ And v_1,…,v_m∈V are linearly independence with m<n ○ Then there exist v_(m+1),…,v_n∈V ○ Such that {v_1,…,v_n} is a basis for V • Outline of proof ○ span{v_1,…,v_m }≠V by the previous theorem ○ Choose v_(m+1)∈V such that v_m∉span{v_1,…,v_m } ○ Then {v_1,…,v_m,v_(m+1) } is also linearly independent ○ If m+1=n, then {v_1,…,v_m,v_(m+1) } is a basis for V ○ Or m+1<n, then repeat the previous steps
Read More >>

Math 375 – 9/20

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Why is span(∅)={0}? • 0 is the additive identity Question 2 • The basis of V={f∈P_n│f(0)+f^′ (0)=0}? • f(x)=a_0+a_1 x+a_2 x^2+…+a_n x^n • f(0)=a_0, f^′ (0)=a_1 • f(0)+f^′ (0)=0 • ⇒a_0=−a_1 • f(x)=a_1 (x−1)+a_2 x^2+…+a_n x^n • Therefore the basis of V is {x−1,x^2,…,x^n}
Read More >>

Math 375 – 9/19

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>
  • 1
  • …
  • 17
  • 18
  • 19
  • 20
  • 21
  • …
  • 43

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP