Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / Page 3

Math 375 – 12/7

  • Dec 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Differentiable • Theorems ○ f differentiable ⇒ f continuous ○ f differentiable ⇒f has partial derivative ○ T_a (v)=∂f/(∂x_1 ) (a) v_1+…+∂f/(∂x_n ) (a) v_n ○ f has continuous partial derivative ⇒f is differentiable • Example ○ There is a function f which has partial derivative everywhere ○ but is not continuous at (0,0) Chain Rule • Formula ○ d/dt f(x_1 (t),…,x_n (t))=∂f/(∂x_1 ) (dx_1)/dt+…+∂f/(∂x_n ) (dx_n)/dt • Proof ○ Let g(t)=f(x_1 (t),…,x_n (t)) § g(t+Δt)−g(t)=f(x_1 (t+Δt),…,x_n (t+Δt))−f(x_1 (t),…,x_n (t)) ○ Define Δx_k=x_k (t+Δt)−x_k (t), (k=1,…,n) § g(t+Δt)−g(t)=∂f/(∂x_1 ) (x)Δx_1+…+∂f/(∂x_n ) (x)Δx_n+Error ○ Derivative of g(t) § g^′ (t)=lim_(Δt→0)⁡〖(g(t+Δt)−g(t))/Δt〗 § =lim_(Δt→0)⁡(∂f/(∂x_1 ) (x) (Δx_1)/Δt+…+∂f/(∂x_n ) (x) (Δx_n)/Δt+Error/Δt) § =∂f/(∂x_1 ) (x) lim_(Δt→0)⁡((Δx_1)/Δt)+…+∂f/(∂x_1 ) (x) lim_(Δt→0)⁡((Δx_n)/Δt)+lim_(Δt→0)⁡(Error/Δt) ○ Note that § lim_(Δt→0)⁡((Δx_k)/Δt)=lim_(Δt→0)⁡((x_k (t+Δt)−x_k (t))/Δt)=(dx_k)/dt § lim_(Δt→0)⁡(Error/Δt)=0 ○ Therefore § g^′ (t)=∂f/(∂x_1 ) (dx_1)/dt+…+∂f/(∂x_n ) (dx_n)/dt • Gradient ○ g^′ (t)=f_(x_1 ) (x(t)) x_1^′ (t)+…+f_(x_n ) (x(t)) x_n^′ (t) ○ g^′ (t)=(█(f_(x_1 )@⋮@f_(x_n ) ))(█(x_1^′ (t)@⋮@x_n^′ (t) ))=∇ ⃗f(x ⃗ )⋅x ⃗^′ (t)=‖∇ ⃗f(x ⃗ )‖⋅‖x ⃗^′ (t)‖ cos⁡θ ○ ∇ ⃗f is called gradient ○ x ⃗^′ (t) is called velocity vector • Interpretation ○ (x_1 (t),…,x_n (t)) cordinates of a point moving in Rn (t=time) ○ Velocity vector: v(t)=x ⃗^′ (t)=lim_(Δt→0)⁡〖(x ⃗(t+Δt)−x ⃗(t))/Δt〗=(x_1^′ (t),…,x_n^′ (t)) ○ Example: Linear motion with constant velocity § x ⃗(t)=(x_1 (t),…,x_n (t))=p ⃗+t ⃗=(p_1+tv_1,…,p_n+tv_n ) § v(t)=x ⃗′(t)=(v_1,..,v_n ) ○ Example: Circular motion § x ⃗(t)=(█(cos⁡t@sin⁡t )) § v(t)=x ⃗′(t)=(█(−sin⁡t@cos⁡t )) ○ Example § f(x,y)=x^2+y^2 § ∇ ⃗f(x,y)=(█(f_x@f_y ))=(█(2x@2y)) • Theorem ○ f(x ⃗(t)) does not depend on t, if and only if ○ ∇ ⃗f(x ⃗(t))⊥x ⃗′(t) for all t • Proof ○ f(x ⃗(t)) constant for atb ○ ⟺d/dt (f(x ⃗(t)))=0 for atb ○ ⟺∇ ⃗f(x ⃗(t))⋅x ⃗(t)=0 for atb ○ ⟺∇ ⃗f(x ⃗(t))⊥x ⃗′(t) ○ Note: By convention 0 ⃗⊥any vector • Application: Gradient Decent ○ To decrease/increase f(x ⃗(t)), how should we choose x^′ (t) ○ Maximize/Minimize Condition § Maximal if cos⁡θ=+1, i.e. θ=0 § Minimal if cos⁡θ=−1, i.e. θ=π ○ Steepest Ascent/Descent ○ Pseudocode Level Sets • Definition ○ D⊆Rn open ○ If f:D→R, then ○ The level set of f at level c is ○ {x ⃗∈Rn│f(x ⃗ )=c}=f^(−1) (c) • Example ○ f(x,y,z)=x^2+y^2+z^2 ○ f^(−1) (1)={(x,y,z)∈R3 |x^2+y^2+z^2=1}=unit sphere ○ f^(−1) (0)={(x,y,z)∈R3 |x^2+y^2+z^2=0}=origin • Tangent ○ Let S⊆Rn, p∈S ○ Then v ⃗∈Rn is tangent to S ○ If there is a path x ⃗(t) with x ⃗(t_0 )=p and x^′ (t)=v ⃗, and x ⃗(t)∈S for all t • Theorem ○ If S=f^(−1) (c)={x ⃗∈Rn│f(x ⃗ )=c} ○ And v ⃗ is tangent to S at p∈S ○ Then ∇ ⃗f(p)⊥v ⃗ • Proof ○ Given v ⃗ is tangent to S ○ So there is a path x(t)∈S for all t with {█(x ⃗(t_0 )=p@x ⃗^′ (t)=v ⃗ )┤ ○ Since f(x ⃗(t))=c for all t ○ We have 0=d/dt f(x ⃗(t))=∇ ⃗f(x ⃗(t))⋅x ⃗^′ (t) ○ So at t=t_0, 0=∇ ⃗f(p)⋅v ⃗
Read More >>

1.1 – What is Physics?

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
Matter • Matter - anything that has mass and takes up space • Mass - the amount of "stuff" making up an object ○ Stars ○ Electrons ○ Neil Diamond • Inertial Mass ○ How hard it is to accelerate an object • Gravitational Mass ○ How large a gravitational force an object experiences Energy • Energy - The ability or capacity to do work • Work - the process of moving an object Mass-Energy Equivalence • In the early 20th century, Albert Einstein formalized a relationship between mass and energy • The mass of an object, a key characteristic of matter, is really a measure of its energy • The source of all energy on Earth is the conversion of mass into energy
Read More >>

1.2 – Math Review

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
Cross Product • Cross (vector) product of two vectors gives you a vector perpendicular to both whose magnitude is equal to the area of a parallelogram defined by the two initial vectors • Positive direction of the cross product is given by the right-hand rule • Cross product of parallel vectors is zero. Calculating the Cross Product • |A ⃗×B ⃗ |=AB sin⁡θ • A ⃗×B ⃗=|■8(i ̂&j ̂&k ̂@A_x&A_y&A_z@B_x&B_y&B_z )|=(A_y B_z−A_z B_y ) i ̂+(A_z B_x−A_x B_z ) j ̂+(A_x B_y−A_y B_x ) k ̂ Cross Product Properties • A ⃗×B ⃗=−B ⃗×A ⃗ • A ⃗×(B ⃗+C ⃗ )=A ⃗×B ⃗+A ⃗×C ⃗ • c(A ⃗×B ⃗ )=(cA ⃗ )×B ⃗=A ⃗×(cB ⃗ ) • d/dt (A ⃗×B ⃗ )=(dA ⃗)/dt×B ⃗+A ⃗×(dB ⃗)/dt Unites
Read More >>

2.1 – Describing Motion I

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
Position / Displacement • An object
Read More >>

2.2 – Describing Motion II

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
Special Case: Constant Acceleration • For cases of constant acceleration, we can derive a set of "kinematic equations" that will allow us to solve for unknown quantities Deriving the Kinematic Equations Free Fall • When the only force acting on an object is the force of gravity, we refer to object
Read More >>
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 43

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP