Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Mathematics

Home / Notes / Mathematics / Page 41

第27讲 西罗定理的应用(选修)

  • Jan 10, 2018
  • Shawn
  • Abstract Algebra
  • No comments yet
西罗定理的应用 • 西罗定理 ○ 对于给定的有限群 G ,|G|=p^α m 并且 α≥1, p∤m 那么 ○ G 总有西罗 p 子群,即存在 P≤G,|P|=p^α ○ 所有西罗 p 子群都共轭,所有 p 子群都是西罗 p 子群的子群 ○ 西罗 p 子群的个数 n_p≡1 mod p 且 n_p |m • 定理 1:所有西罗 p 子群都同构 ○ 根据西罗定理,所有西罗 p 子群都共轭 ○ 因为共轭就是自同构,所以命题得证 • 定理 2:G 的一个西罗 p 子群是正规子群当且仅当 n_p=1 ○ 证明略 • 定理 3:如果 |G|=pq,pq 质数,那么西罗 q 子群 Q⊴G ○ n_q≡1 mod q ○ ⇒n_q=kq+1, k∈N ○ 又因为 n_q |p,故 k=1 ○ 即 n_q=1 ○ 根据定理 2,Q⊴G • 推论 ○ 定理 3 中考虑合成列 {e}⊲Q⊲G ○ |G/Q|=|G|/|Q| =p⇒G\/Q 是 p 阶循环群 ○ |Q|=q⇒Q 是 q 阶循环群 ○ ⇒G 是一个可解群 • 定理 4:若 |G|=12,则 G 有一个 3 阶循环正规子群,或 G≅A_4 ○ 假设 n_3≠1 那么因为 12=3×4 ○ 所以根据西罗定理,n_3≡1 mod 3 且 n_3 |4 ○ ⇒n_3=4 ○ 即 G 里有 4 个 3 阶循环子群 ○ P_1,P_2,P_3,P_4 两两相交于恒等元素 ○ |G:N_G (P_i )|=4 ○ ⇒|N_G (P_i )|=|G|/4=12/4=3 ○ 同时 P_i⊴N_G (P_i ) 故 N_G (P_i )=P_i ○ 令 S={P_1,P_2,P_3,P_4 } ○ 考虑 G↷S 得到群同态 f:G→S_4 ○ 根据群同构第一定理 G\/ker⁡f≅f(G)≤S_4 ○ ker⁡f=⋂8_(i=1)^4▒〖N_G (P_i ) 〗={e} ○ ⇒G≅S_4 的子群 ○ 可以证明 S_4 里的 4 个 3 阶循环子群分别由以下轮换生成 ○ (1 2 3), (1 2 4),(2 3 4), (1 3 4) ○ 且这 4 个 3 阶循环子群都在四次交错群 A_4 中 ○ 可以得到 f(G) 与 A_4 有一个至少 9 元素的交集 ○ f(G)∩A_4≤A_4 ○ 又因为 |f(G)∩A_4 |≥9, |A_4 |=12 ○ 根据拉格朗日定理,|f(G)∩A_4 |=12 ○ ⇒f(G)=A_4 ○ ⇒G≅S_4 • 定理 5:如果 |G|=p^2 q, p≠q 质数,那么 G 一定有正规西罗子群 ○ 如果 pq § 那么 n_p=1+kp 且 n_p |q § ⇒k=0, n_p=1 § 西罗 p 子群是正规子群 ○ 如果 pq § 同理有 n_q=1+tq 且 n_q |p^2 § 如果 t=0,西罗 q 子群是正规子群 § 如果 t≥1,n_qqp § ⇒n_q=p^2 § ⇒p^2−1=tq § ⇒(p+1)(p−1)=tq § 故 q|p+1 但 qp § 所以 q=p+1 § 又因为 p,q 均为质数 § 所以 p=2, q=3 § ⇒|G|=12 § 根据定理 4,G 有一个正规西罗子群,或 G≅A_4 § 而 A_4 有正规 2 阶西罗 2 子群 ○ 命题成立
Read More >>

第28讲 可解群

  • Jan 10, 2018
  • Shawn
  • Abstract Algebra
  • No comments yet
可解群 • 定义 ○ 一个群 G 是可解群 ○ 当且仅当 G 有一系列子群 G_i (1≤i≤n) 且满足 ○ {e}⊲G_1⊲G_2⊲…⊲G_n=G ○ G_i \/G_(i−1) 是阿贝尔群 • 例1 ○ G=Z\/15={0,1,2,3,…,14} 是一个阿贝尔群 ○ 构造 N=⟨5⟩={0,5,10},|N|=3 ○ 构造正规子群 G∕N 则|G\/N|=|G|/|N| =15/3=5 ○ 考虑 0⊲N⊲G,且 |N\/0|=|N|=3, |G\/N|=5 均为质数 ○ 故 N\/0 和 G\/N 均为阿贝尔群 ○ 所以 G 是可解群 • 例2 ○ 令 G=D_6 即二面体群,对应正三角形的三个旋转对称和翻转对称 ○ 令 C_3={旋转 0°,旋转 120°,旋转 240°} ○ 可以得到 {e}⊲C_3⊲D_6 ○ |C_3 |=3, |D_6 \/C_3 |=6/3=2 均为质数 ○ 所以 C_3, D_6 \/C_3 为阿贝尔群 ○ 所以 G 是可解群 • 例3 ○ 所有的阿贝尔群都是可解群 ○ 取 {e}⊲G 即满足条件 • 定理 ○ 命题 § 对于有限群 G,下面的命题等价 1. G 是可解群,即 {e}⊲G_1⊲G_2⊲…⊲G_n=G 且 G_i \/G_(i−1) 是阿贝尔群 2. {e}⊲H_1⊲H_2⊲…⊲H_m=G 且 H_i \/H_(i−1) 都是循环群 3. G 的所有合成因子都是质数阶的 4. {e}⊲N_1⊲N_2⊲…⊲N_l=G 且 N_i⊲G 且 N_i \/N_(i−1) 是阿贝尔群 ○ 证明 4⟺1 § 4⇒1 显然 § 以下证明 1⇒4 § 假设 G 是阿贝尔群,对 |G| 进行数学归纳 § 若 |G|=1 则无需证明 § 根据柯西定理,p||G|⇒ 存在一个 p 阶子群 N⊲G § 考虑 |G\/N|=|G|/p⊲|G| § 运用归纳假设,存在 {e}⊲(H_1 ) ̅⊲(H_2 ) ̅⊲…⊲(H_n ) ̅=G\/N § 使得 (H_i ) ̅\/(H_(i−1) ) ̅ 是循环群 § 根据群同构第四定理,{e}⊲N⊲H_1⊲H_2⊲…⊲H_m=G § 根据群同构第三定理,以上序列满足命题 4 的条件 ○ 证明 2⇒3 § 假设 G 是循环群 § 对 G 的阶进行数学归纳 § 若 |G|=1 则无需证明 § 假设命题 3 对于所有阶小于 |G| 的循环群都成立 § 根据柯西定理,可以找到 p||G| § 且可以找到 p 阶子群 N⊲G § 构造 |G\/N|=|G|/p⊲|G| § 运用归纳假设,可以找到 {e}⊲(G_1 ) ̅⊲(G_2 ) ̅⊲…⊲(G_n ) ̅=G\/N § 使得 (G_i ) ̅\/(G_(i−1) ) ̅ 是循环群 § 根据群同构第四定理,{e}⊲G_1⊲G_2⊲…⊲G_n=G § 根据群同构第三定理,以上序列满足命题 3 的条件 ○ 注:视频有断…
Read More >>

Math 375 – 12/13

  • Dec 13, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡(A−λI)=|■8(3−λ&0@3&−2−λ)|=λ^2−λ−6=0 • ⇒λ_1=3, λ_2=−2 • ⇒Λ=(■8(3&0@0&−2)) • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=k(5,3), k∈R • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=k(0,1), k∈R • The basis is (5,3), (0,1) Exercise 8.17 Question 8 • Find a Cartesian equation for the tangent plane • to the surface xyz=a^3 at a general point (x_0,y_0,z_0 ). ○ ∇f=(█(yz@xz@xy)) ○ H={(x,y,z)∈R3│∇f(x_0,y_0,z_0 )⋅(█(x−x_0@y−y_0@z−z_0 ))=0} ○ ={(x,y,z)∈R3│y_0 z_0 (x−x_0 )+x_0 z_0 (y−y_0 )+x_0 y_0 (z−z_0 )=0} ○ ={(x,y,z)∈R3│xy_0 z_0+x_0 yz_0+x_0 y_0 z=3x_0 y_0 z_0=3a^3 } Question 2 • Let f:R2→R smooth • Let g(x,y)=f(u,v)=f(sin⁡〖(x)y,x^y 〗 ) • Find g_x,g_y in terms of f_u,f_v ○ Let h(x,y)=[█(u(x,y)@v(x,y) )]=[█(sin⁡(x)y@x^y )], Then T_g=T_f∘T_ℎ ○ T_f=[■8(∂f/∂u&∂f/∂v)]=[■8(f_u&f_v )] ○ T_ℎ=[■8(∂u/∂x&∂u/∂y@∂v/∂x&∂v/∂y)]=[■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )] ○ T_g=T_f∘T_ℎ=[■8(f_u&f_v )][■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )]=[█(f_u cos⁡(x)y+f_v y⋅x^(y−1)@f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )]^T ○ ⇒{█(g_x=f_u cos⁡(x)y+f_v y⋅x^(y−1)@g_y=f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )┤
Read More >>

Math 375 – 12/12

  • Dec 12, 2017
  • Shawn
  • Math 375
  • No comments yet
Derivative of Vector Fields • Map ○ f:Rn→Rm ○ f(x_1,…,x_n )=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )] • Example 1 ○ n=1, m=2 ○ f:R→Rn ○ f:t↦[█(f_1 (t)@f_2 (t) )]=[█(x(t)@y(t) )] ○ Also called parametric curve • Example 2 ○ f:Rn→R, where n≥2 ○ f is a function of n variables f(x_1,…,x_n ) • Example 3 ○ Rn→Rm, where n≥2, m≥2 ○ f:R2→R2 ○ f:(u,v)⟼(x,y) ○ Polar Coordinates § f(r,θ)=[█(x(r,θ)@y(r,θ) )]=[█(r cos⁡θ@r sin⁡θ )] • Example 4 ○ f(u,v)=[■8(2&3@1&−1@1&1)][█(u@v)]=[█(2u+3v@u−v@u+v)] • Definition ○ A map f:Rn→Rm is differentiable at a∈Rn if ○ f(a+y)=f(a)+T_a (y)+E(a,y)‖y‖ ○ Where T_a:Rn→Rm is a linear transformation, and lim_(y→0)⁡E(a,y)=0 • Theorem ○ f differentiable at a⇒f continuous at a • Theorem ○ If f(x)=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )], and f_1,…,f_m have continuous partial derivatives ○ Then f is differentiable and T_a (y)=[■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))][█(y_1@⋮@y_n )] • Example ○ f(r,θ)=[█(r cos⁡θ@r sin⁡θ )] ○ The linear transformation T_a has the matrix § mat(T_a )=[■8((∂f_1)/∂r&(∂f_1)/∂θ@(∂f_2)/∂r&(∂f_2)/∂θ)]=[■8(∂x/∂r&∂x/∂θ@∂y/∂r&∂y/∂θ)]=[■8(cos⁡θ&−r sin⁡θ@sin⁡θ&r cos⁡θ )] ○ At a=(√2,π/4) § mat(T_a )=[■8(√2∕2&−1@√2∕2&1)] § T_a [█(1@0)]=[█(√2∕2@√2∕2)] § T_a [█(0@1)]=[█(−1@1)] ○ In general § mat(T_((r,θ) ) )=[■8(cos⁡θ&−r sin⁡θ@sin⁡θ&r cos⁡θ )] § T_a [█(ε@0)]=ε[█(cos⁡θ@sin⁡θ )] § T_a [█(0@ε)]=εr[█(−sin⁡θ@cos⁡θ )] • Common notations ○ T_a (v)=df_a⋅v=Df(a)⋅v=f^′ (a)⋅v • Jacobian Matrix ○ [■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))] is called Jacobian Matrix • Chain Rule ○ Given f:Rn→Rm, g:Rm→Rk ○ Consider h(x)=g(f(x))=g∘f(x) ○ {█(f is differentiable at x@g is differentiable at f(x) )┤⇒h=g∘f is differentiable at x ○ And d(g∘f)_x=dg_f(x) ⋅df_x ○ Another notation: (g∘f)^′ (x)=g^′ (f(x))⋅f^′ (x) ○ In components § x=[█(x_1@⋮@x_n )]∈Rn § u=[█(u_1@⋮@u_m )]=[█(f_1 (x)@⋮@f_m (x) )]=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )]∈Rm § v=[█(v_1@⋮@v_k )]=[█(g_1 (u)@⋮@g_k (u) )]=[█(g_1 (u_1,…,u_m )@⋮@g_k (u_1,…,u_m ) )]=[█(g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))@⋮@g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n )) )]∈Rn § mat[(g∘f)^′ ] § =[■8((∂v_1)/x_1 &⋯&(∂v_1)/x_n @⋮&⋱&⋮@(∂v_k)/x_1 &⋯&(∂v_k)/x_n )] § =[■8(∂/(∂x_1 ) g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))&⋯&∂/(∂x_n ) g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))@⋮&⋱&⋮@∂/(∂x_1 ) g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))&⋯&∂/(∂x_n ) g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n )) )] § =[■8((∂g_1)/(∂u_1 )⋅(∂f_1)/(∂x_1 )+…+(∂g_1)/(∂u_m )⋅(∂f_m)/(∂x_1 )&⋯&(∂g_1)/(∂u_1 )⋅(∂f_1)/(∂x_n )+…+(∂g_1)/(∂u_m )⋅(∂f_m)/(∂x_n )@⋮&⋱&⋮@(∂g_k)/(∂u_1 )⋅(∂f_1)/(∂x_1 )+…+(∂g_k)/(∂u_m )⋅(∂f_m)/(∂x_1 )&⋯&(∂g_k)/(∂u_1 )⋅(∂f_1)/(∂x_n )+…+(∂g_k)/(∂u_m )⋅(∂f_m)/(∂x_n ))] § =[■8((∂g_1)/(∂u_1 )&⋯&(∂g_1)/(∂u_m )@⋮&⋱&⋮@(∂g_k)/(∂u_1 )&⋯&(∂g_k)/(∂u_m ))][■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))] § =mat(g^′ (f(x)))mat(f^′ (x))
Read More >>

Math 375 – 12/11

  • Dec 11, 2017
  • Shawn
  • Math 375
  • No comments yet
Quiz Question • Given ○ A:R3→R3 ○ det⁡〖(A−2I)=0〗 ○ tr (A)=−2 ○ det⁡(A)=6 • Question: Eigenvalue of A ○ det⁡〖(A−2I)=0〗⇒2 is an eigenvalue ○ tr (A)=−2⇒∑_(i=1)^n▒λ_i =λ_1+λ_2+λ_3=−2 ○ det⁡(A)=6⇒∏_(i=1)^n▒λ_i =λ_1 λ_2 λ_3=6 ○ {█(█(λ_1=2@λ_1+λ_2+λ_3=−2)@λ_1 λ_2 λ_3=6)┤⇒{█(λ_2=−3@λ_3=−1)┤ ○ Therefore eigenvalues are 2, −1, −3 • Question: Characteristic Polynomial ○ f(λ)=(λ−λ_1 )(λ−λ_2 )(λ−λ_3 )=(λ−2)(λ+1)(λ+3) • Note: f(λ)=det⁡(λI−A) Question 1 • Given ○ f:R2\{0}→R ○ f(x,y)=xy/(x^2+y^2 ), ∀(x,y)∈R2 • Question: Find the direction of steepest decedent at (1,3) ○ ∇f(x,y)=[█(∂f/∂x@∂f/∂y)]=[█(y(y^2−x^2 )/(x^2+y^2 )^2 @x(x^2−y^2 )/(x^2+y^2 )^2 )] ○ ∇f(1,3)=[█(3(3^2−1^2 )/(1^2+3^2 )^2 @1(1^2−3^2 )/(1^2+3^2 )^2 )]=[█(6/25@−2/25)] • Question: Find the line best approximate the level set at (1,3) ○ ∇f(1,3)⋅n ⃗=0⇒n ⃗=[█(1@3)] ○ x+3y+c=0 ○ 1+3⋅3+c=0 ○ ⇒c=−10 ○ l: x+3y−10=0 ○ Alternative: ∇f(1,3)⋅[█(x−1@y−3)]=0 • Question: Estimate f(0.8,3.05) ○ f(0.8,3.05) ○ =f(1−0.2,3+0.05) ○ ≈f(1,3)+∇f(1,3)[█(−0.2@0.05)] ○ =3/(1^2+3^3 )+[█(6/25@−2/25)][█(−0.2@0.05)] ○ =0.248 Question 2 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡〖(A−λI)=λ^2−λ−6=0〗 • ⇒λ_1=3, λ_2=−2 • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=(5,3) • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=(0,1) • The basis is (5,3), (0,1)
Read More >>
  • 1
  • …
  • 39
  • 40
  • 41
  • 42
  • 43
  • …
  • 60

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP