Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Mathematics

Home / Notes / Mathematics / Page 46

Math 375 – 11/9

  • Nov 10, 2017
  • Shawn
  • Math 375
  • No comments yet
Expansion by Rows Theorem • Cofactor Matrix ○ C_kl=(−1)^(k+l) {█((n−1)×(n−1) determinant obtained@by deleting row k and column l @from the original determinant)} • Determinant and Cofactor Matrix ○ det⁡(A)=|■8(a_11&a_12&⋯&a_1n@⋮&⋮&⋮&⋮@a_k1&a_k2&…&a_kn@⋮&⋮&⋮&⋮@a_n1&a_n2&⋯&a_nn )|=a_k1 C_k1+a_k2 C_k2+…+a_kn C_kn ○ [■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )] ⏟([■8(C_11&C_21&⋯&C_n1@C_12&C_22&…&C_n2@⋮&⋮&⋱&⋮@C_1n&C_2n&⋯&C_nn )] )┬(adjugate matrix of A: adj(A))=det⁡A⋅[■(1&&&@&1&&@&&⋱&@&&&1)] • Expansion by Rows ○ |■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=a_11 C_11+a_12 C_12+…+a_1n C_1n ○ |■8(x_1&x_2&⋯&x_n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=x_1 C_11+x_2 C_12+…+x_n C_1n • Calculating A⋅adj(A) ○ Expanding A⋅adj(A) § [■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )][■8(C_11&C_21&⋯&C_n1@C_12&C_22&…&C_n2@⋮&⋮&⋱&⋮@C_1n&C_2n&⋯&C_nn )] § =[■8(∑_(k=1)^n▒〖a_1k C_1k 〗&∑_(k=1)^n▒〖a_1k C_2k 〗&⋯&∑_(k=1)^n▒〖a_1k C_nk 〗@∑_(k=1)^n▒〖a_2k C_1k 〗&∑_(k=1)^n▒〖a_2k C_2k 〗&…&∑_(k=1)^n▒〖a_2k C_nk 〗@⋮&⋮&⋱&⋮@∑_(k=1)^n▒〖a_nk C_1k 〗&∑_(k=1)^n▒〖a_nk C_2k 〗&⋯&∑_(k=1)^n▒〖a_nk C_nk 〗)] ○ Where § ∑_(k=1)^n▒〖a_1k C_1k 〗=|■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=det⁡A § ∑_(k=1)^n▒〖a_1k C_2k 〗=|■8(a_21&a_22&⋯&a_2n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=0 § ⋮ ○ Conclusion § A⋅adj(A)=[■(det⁡A&&&@&det⁡A&&@&&⋱&@&&&det⁡A )]=det⁡A [■(1&&&@&1&&@&&⋱&@&&&1)] • Theorem ○ det⁡〖(A)≠0〗⟺A is invertible and A^(−1)=1/det⁡A ⋅adj(A) ○ det⁡(A)=0⟺A is not invertible • Example ○ Let A=[■8(a&b@c&d)] ○ Cofactor Matrix § C=[■8(C_11&C_12@C_21&C_22 )]=[■8(d&−c@−b&a)] ○ Adjugate Matrix § adj(A)=C^T=[■8(d&−b@−c&a)] ○ Determinant § det⁡A=|■8(a&b@c&d)|=ad−bc ○ Inverse Matrix § A^(−1)=[■8(a&b@c&d)]^(−1)=1/det⁡A ⋅adj(A)=1/(ad−bc) [■8(d&−b@−c&a)] Cramer
Read More >>

Math 375 – 11/8

  • Nov 09, 2017
  • Shawn
  • Math 375
  • No comments yet
Effect of Row Operations on Determinants Row Operation Determinant Row A→Row A+c⋅Row B det⁡M→det⁡M Row A→c⋅Row A det⁡M→c⋅det⁡M Row A↔┴switch Row B det⁡M→−det⁡M Understanding of Matrix Multiplication in terms of Linear Map Composition • Motivation ○ V→┴T W→┴S Z • Setup ○ {e_1…e_n }: basis of V ○ {f_1…f_m }: basis of W ○ {g_1…g_k }: basis of Z ○ Let m(T)=(t_ij ) ○ Let m(S)=(s_ij ) • Claim ○ m(S)⋅m(T)=m(ST) • Proof ○ T(e_i )=∑_(j=1)^m▒〖t_ij f_j 〗 ○ S(f_j )=∑_(k=1)^r▒〖s_jk g_k 〗 ○ ST(e_i )=∑_(j=1)^m▒∑_(k=1)^r▒〖t_ij s_jk g_k 〗 ○ Which is the same as matrix multiplication
Read More >>

Math 375 – 11/7

  • Nov 08, 2017
  • Shawn
  • Math 375
  • No comments yet
Determinant and Area • |■8(a_1&a_2@b_1&b_2 )| = area of parallelogram with sides a=(█(a_1@a_2 )), b=(█(b_1@b_2 )) • Proof by graph • Proof ○ Area(A_1,A_2 )=signed area of parallelogram spanned by A_1, A_2 ○ If A_1→A_2 is counter-clockwise = area ○ If A_1→A_2 is clockwise =−area ○ Then Area(A_1,A_2 )=det⁡(A_1,A_2 ), because ○ Alternating § Area(A_1,A_2 )=−Area(A_2,A_1 ) § (by definition, same area, but different orientation) ○ Linearity(Homogeneous) § Area(t⋅A_1,A_2 )=t⋅Area(A_1,A_2 ) § (Easy to prove from picture) ○ Linearity(Additive) § Area(A+B,C)=Area(A,C)+Area(B,C) § If A,C is parallel, then □ Area(A,C)=0 § If A,C is independent , then □ Area(A+sC,C)=Area(A,C), ∀A,C § Let B=t⋅A+s⋅C, then □ Area(A+B,C) □ =Area(A+t⋅A+s⋅C,C) □ =Area(A+t⋅A,C) □ =(1+t)Area(A,C) □ =Area(A,C)+t⋅Area(A,C) □ =Area(A,C)+Area(t⋅A,C) □ =Area(A,C)+Area(t⋅A+s⋅C,C) □ =Area(A,C)+Area(B,C) § Therefore Area(A+B,C)=Area(A,C)+Area(B,C) ○ Uniqueness Theorem § Area(A,B) § =det⁡〖(A,B)⋅Area(I_1,I_2 )〗 § =det⁡〖(A,B)⋅Area(unit square)〗 § =det⁡(A,B) Determinant and Volume • det⁡〖(A,B,C)=signed volume〗 of parallelepiped spanned by A,B,C Inverse of a Matrix • Setup ○ T:Rn→Rn linear ○ T has a matrix m(T)=[■8(T_11&⋯&T_1n@⋮&⋱&⋮@T_n1&⋯&T_nn )] • The following statements are equivalent ○ N(T)={0} ○ T is injective ○ T is one\-to\-one ○ T is bijective § because T:Rn→Rn § dim⁡N(T)+dim⁡range(T)=dim⁡〖Rn 〗 § ⇒dim⁡range(T)=n § ⇒R(T)=Rn ○ There is a map S:Rn→Rn with ST=TS=I • Find the inverse of 2×2 matrix ○ T=[■8(1&3@2&5)] ○ Find T^(−1), i.e. solve Tx=y ○ Note: Tx=y⟺x=T^(−1) y ○ Normal version § [■8(1&3@2&5)][█(x_1@x_2 )]=[█(y_1@y_2 )] § {█(x_1+3x_2=1⋅y_1+0⋅y_2@2x_2+5x_2=0⋅y_1+1⋅y_2 )┤ § ⇒{█(x_1=−5y_1+3y_2@x_2=2y_1−y_2 )┤ § ⇒x=T^(−1) y § where T^(−1)=[■8(−5&3@2&−1)] ○ Shorthand § [T│I] § ~[■8(1&3@2&5) │ ■8(1&0@0&1)] § ~[■8(1&3@0&−1) │ ■8(1&0@−2&1)] § ~[■8(1&0@0&−1) │ ■8(−5&3@−2&1)] § ~[■8(1&0@0&1) │ ■8(−5&3@2&−1)] § ~[I│T^(−1) ] § Therefore T^(−1)=[■8(−5&3@2&−1)] Minors and Cofactors • Theorem ○ |■8(a_11&a_12&⋯&a_1n@⋮&⋮&⋮&⋮@a_k1&a_k2&…&a_kn@⋮&⋮&⋮&⋮@a_n1&a_n2&⋯&a_nn )|=a_k1 C_k1+a_k2 C_k2+…+a_kn C_kn ○ C_kl=cofactor matrix • Cofactor Matrix C_kl=(−1)^(k+l) {█((n−1)×(n−1) determinant obtained@by deleting row k and column l @from the original determinant)} • Example ○ |■8(1&7&2@4&π&−1@3&ln⁡2&2)| ○ =3×|■8(7&2@π&−1)|−ln⁡2 |■8(1&2@4&−1)|+2|■8(1&7@4&π)| ○ =3×(−7−2π)−ln⁡2×(−9)+2×(π−28) ○ =−77−4π+9ln⁡2 • Matrix Multiplication ○ Let P=[■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )][■8(C_11&C_21&⋯&C_n1@C_12&C_22&…&C_n2@⋮&⋮&⋱&⋮@C_1n&C_2n&⋯&C_nn )] ○ P_11=a_11 C_11+a_12 C_12+…+a_1n C_1n=det⁡A ○ P_21=a_21 C_11+a_21 C_12+…++a_21 C_1n=0 ○ Because we have two equal row ○ Therefore P=det⁡A [■(1&&@&⋱&@&&1)] •
Read More >>

Math 375 – 11/6

  • Nov 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Find the Inverse of Matrix • Gauss-Jordan Elimination ○ (A│I)~(I│A^(−1) ) • Example ○ (■8(1&2&4@3&5&−7@0&0&1)│■(1&&@&1&@&&1))→(■8(1&2&4@0&−1&−13@0&0&1)│■(1&0&0@−3&1&0@0&0&1)) ○ →(■8(1&2&4@0&−1&−13@0&0&1)│■(1&0&0@−3&1&0@0&0&1))→(■8(1&2&4@0&−1&0@0&0&1)│■(1&0&0@−3&1&13@0&0&1)) ○ →(■8(1&2&0@0&−1&0@0&0&1)│■(1&0&−4@−3&1&13@0&0&1))→(■8(1&0&0@0&−1&0@0&0&1)│■(−5&2&22@−3&1&13@0&0&1)) ○ →(■8(1&0&0@0&1&0@0&0&1)│■(−5&2&22@3&−1&−13@0&0&1)) ○ Therefore (■8(1&2&4@3&5&−7@0&0&1))^(−1)=(■(−5&2&22@3&−1&−13@0&0&1)) Question 1 • Recall that the determinant is a polynomial in the entries of the matrix. • Find the coefficient of t^3 in the following polynomial |■8(2&3&−7&t@5&t&a&b@t&−1&0&55@1/2&3&c&−π)| • Answer: By cofactor expansion, the coefficient is c Question 2 • Suppose A is an orthogonal matrix, meaning A is invertible and A^(−1)=A^T • What possible value could the determinant of A have? • Answer: ○ |A^(−1) |=|A^T | ○ ⇒1/|A| =|A| ○ ⇒|A|=±1 Question 3 • Let V be the vector space of all (real) polynomials of degree 2 or less. • Using the basis 1,x,x^2, find the matrix of the linear map T:V→V given by • (Tf)(x)=f(x+2) for all f∈V and x∈R • Answer: ○ T(1)=1 ○ T(x)=2+x ○ T(x^2 )=4+4x+x^2 ○ ⇒M(T)=■(&■8(1&x&x^2 )@■8(1@x@x^2 )&(■8(1&2&4@0&1&4@0&0&1)) ) Question 4 • Let x,y,z,w be real numbers. • Compute the determinant of the following matrix • Answer: ○ |■8(1&x&x^2&x^3@1&y&y^2&y^3@1&z&z^2&z^3@1&w&w^2&w^3 )|=(w−z)(w−y)(w−x)(z−y)(z−x)(y−x)
Read More >>

Math 375 – Homework 9

  • Nov 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>
  • 1
  • …
  • 44
  • 45
  • 46
  • 47
  • 48
  • …
  • 60

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP